3.137 \(\int \sqrt{a+a \sec (c+d x)} \tan (c+d x) \, dx\)

Optimal. Leaf size=51 \[ \frac{2 \sqrt{a \sec (c+d x)+a}}{d}-\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{d} \]

[Out]

(-2*Sqrt[a]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d + (2*Sqrt[a + a*Sec[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0445641, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3880, 50, 63, 207} \[ \frac{2 \sqrt{a \sec (c+d x)+a}}{d}-\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x],x]

[Out]

(-2*Sqrt[a]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d + (2*Sqrt[a + a*Sec[c + d*x]])/d

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+a \sec (c+d x)} \tan (c+d x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac{2 \sqrt{a+a \sec (c+d x)}}{d}+\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac{2 \sqrt{a+a \sec (c+d x)}}{d}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^2}{a}} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{d}\\ &=-\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{2 \sqrt{a+a \sec (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.0458126, size = 60, normalized size = 1.18 \[ \frac{\sqrt{a (\sec (c+d x)+1)} \left (2 \sqrt{\sec (c+d x)+1}-2 \tanh ^{-1}\left (\sqrt{\sec (c+d x)+1}\right )\right )}{d \sqrt{\sec (c+d x)+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x],x]

[Out]

(Sqrt[a*(1 + Sec[c + d*x])]*(-2*ArcTanh[Sqrt[1 + Sec[c + d*x]]] + 2*Sqrt[1 + Sec[c + d*x]]))/(d*Sqrt[1 + Sec[c
 + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 42, normalized size = 0.8 \begin{align*}{\frac{1}{d} \left ( 2\,\sqrt{a+a\sec \left ( dx+c \right ) }-2\,\sqrt{a}{\it Artanh} \left ({\frac{\sqrt{a+a\sec \left ( dx+c \right ) }}{\sqrt{a}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(1/2)*tan(d*x+c),x)

[Out]

1/d*(2*(a+a*sec(d*x+c))^(1/2)-2*a^(1/2)*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.88467, size = 475, normalized size = 9.31 \begin{align*} \left [\frac{\sqrt{a} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \,{\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, d}, \frac{\sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) + 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*log(-8*a*cos(d*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/
cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/d, (sqrt(-a)*arctan(2*sqrt(
-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a)) + 2*sqrt((a*cos(d*x + c) + a)
/cos(d*x + c)))/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \tan{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(1/2)*tan(d*x+c),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*tan(c + d*x), x)

________________________________________________________________________________________

Giac [A]  time = 5.07202, size = 111, normalized size = 2.18 \begin{align*} \frac{\sqrt{2} a^{2}{\left (\frac{\sqrt{2} \arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a} + \frac{2}{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} a}\right )} \mathrm{sgn}\left (\cos \left (d x + c\right )\right )}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)*tan(d*x+c),x, algorithm="giac")

[Out]

sqrt(2)*a^2*(sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a) + 2/(sqrt(-
a*tan(1/2*d*x + 1/2*c)^2 + a)*a))*sgn(cos(d*x + c))/d